Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Elife ; 112022 06 07.
Article in English | MEDLINE | ID: covidwho-1879632

ABSTRACT

TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), is critical for placental trophoblast syncytialization, HIV infection, and SARS-CoV2-mediated syncytialization, however, how TMEM16F is activated during cell fusion is unclear. Here, using trophoblasts as a model for cell fusion, we demonstrate that Ca2+ influx through the Ca2+ permeable transient receptor potential vanilloid channel TRPV4 is critical for TMEM16F activation and plays a role in subsequent human trophoblast fusion. GSK1016790A, a TRPV4 specific agonist, robustly activates TMEM16F in trophoblasts. We also show that TRPV4 and TMEM16F are functionally coupled within Ca2+ microdomains in a human trophoblast cell line using patch-clamp electrophysiology. Pharmacological inhibition or gene silencing of TRPV4 hinders TMEM16F activation and subsequent trophoblast syncytialization. Our study uncovers the functional expression of TRPV4 and one of the physiological activation mechanisms of TMEM16F in human trophoblasts, thus providing us with novel strategies to regulate CaPLSase activity as a critical checkpoint of physiologically and disease-relevant cell fusion events.


Subject(s)
Anoctamins/metabolism , COVID-19 , HIV Infections , Phospholipid Transfer Proteins/metabolism , Calcium/metabolism , Female , Humans , Placenta/metabolism , Pregnancy , RNA, Viral , SARS-CoV-2 , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Trophoblasts/metabolism
2.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750605

ABSTRACT

Lethality of Covid-19 during the 2020 pandemic, currently in the exponentially-accelerating phase in most countries, is critically driven by disruption of the alveolo-capillary barrier of the lung, leading to lung edema as a direct consequence of SARS-CoV-2 infection. We argue for inhibition of the TRPV4 calcium-permeable ion channel as a strategy to address this issue, based on the rationale that TRPV4 inhibition is protective in various preclinical models of lung edema, and that TRPV4 hyperactivation potently damages the alveolo-capillary barrier, with lethal outcome. We believe that TRPV4 inhibition has a powerful prospect at protecting this vital barrier in Covid-19 patients, even to rescue a damaged barrier. A clinical trial using a selective TRPV4 inhibitor demonstrated a benign safety profile in healthy volunteers and in patients suffering from cardiogenic lung edema. We argue for expeditious clinical testing of this inhibitor in Covid-19 patients with respiratory malfunction and at risk for lung edema. We note that among the currently pursued therapeutic strategies against Covid-19, none is designed to directly protect the alveolo-capillary barrier. Successful protection of the alveolo-capillary barrier will not only reduce Covid-19 lethality but will pre-empt a catastrophic scenario in healthcare with insufficient capacity to provide ventilator-assisted respiration.

3.
SSRN ; : 3558887, 2020 Mar 23.
Article in English | MEDLINE | ID: covidwho-679341

ABSTRACT

Lethality of Covid-19 during the 2020 pandemic, currently in the exponentially-accelerating phase in most countries, is critically driven by disruption of the alveolo-capillary barrier of the lung, leading to lung edema as a direct consequence of SARS-CoV-2 infection. We argue for inhibition of the TRPV4 calcium-permeable ion channel as a strategy to address this issue, based on the rationale that TRPV4 inhibition is protective in various preclinical models of lung edema, and that TRPV4 hyperactivation potently damages the alveolo-capillary barrier, with lethal outcome. We believe that TRPV4 inhibition has a powerful prospect at protecting this vital barrier in Covid-19 patients, even to rescue a damaged barrier. A clinical trial using a selective TRPV4 inhibitor demonstrated a benign safety profile in healthy volunteers and in patients suffering from cardiogenic lung edema. We argue for expeditious clinical testing of this inhibitor in Covid-19 patients with respiratory malfunction and at risk for lung edema. We note that among the currently pursued therapeutic strategies against Covid-19, none is designed to directly protect the alveolo-capillary barrier. Successful protection of the alveolo-capillary barrier will not only reduce Covid-19 lethality but will pre-empt a catastrophic scenario in healthcare with insufficient capacity to provide ventilator-assisted respiration.

4.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1239-L1243, 2020 06 01.
Article in English | MEDLINE | ID: covidwho-246452

ABSTRACT

Lethality of coronavirus disease (COVID-19) during the 2020 pandemic, currently still in the exponentially accelerating phase in most countries, is critically driven by disruption of the alveolo-capillary barrier of the lung, leading to lung edema as a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We argue for inhibition of the transient receptor potential vanilloid 4 (TRPV4) calcium-permeable ion channel as a strategy to address this issue, based on the rationale that TRPV4 inhibition is protective in various preclinical models of lung edema and that TRPV4 hyperactivation potently damages the alveolo-capillary barrier, with lethal outcome. We believe that TRPV4 inhibition has a powerful prospect at protecting this vital barrier in COVID-19 patients, even to rescue a damaged barrier. A clinical trial using a selective TRPV4 inhibitor demonstrated a benign safety profile in healthy volunteers and in patients suffering from cardiogenic lung edema. We argue for expeditious clinical testing of this inhibitor in COVID-19 patients with respiratory malfunction and at risk for lung edema. Perplexingly, among the currently pursued therapeutic strategies against COVID-19, none is designed to directly protect the alveolo-capillary barrier. Successful protection of the alveolo-capillary barrier will not only reduce COVID-19 lethality but will also preempt a distressing healthcare scenario with insufficient capacity to provide ventilator-assisted respiration.


Subject(s)
Betacoronavirus , Coronavirus Infections , Lung/virology , Pandemics , Pneumonia, Viral , Pulmonary Edema/prevention & control , TRPV Cation Channels/antagonists & inhibitors , COVID-19 , Calcium/metabolism , Coronavirus Infections/virology , Humans , Lung/metabolism , Pneumonia, Viral/virology , Pulmonary Edema/virology , Respiration, Artificial , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL